(Copyright©2023 by Daniel B. Sedory.)
$\leftarrow$ Previous Page
Obtaining the Second Order Partial Differentials: $\partial^2/\partial y^2$The second order partial derivative of the function $f$ (with respect to $y$) is also found by substituting some of the right-sides of the equations already shown there into the first order differentials highlighted below, and then making use of the chain rule, $\colorbox{lightblue}{$\frac{d}{dx}(uw) = u\frac{dw}{dx} + w\frac{du}{dx}$}$, as before: $\newcommand{\pdif}[2]{\frac{\partial #1}{\partial #2}}$ \begin{align*} \large{\pdif{^2 f}{y^2}} &\colorbox{yellow}{$=$}\ \large{\sin\theta\ \sin\phi\ \pdif{^2\ f}{r\ \partial y}+\ \frac{\cos\theta\ \sin\phi}{r}\ \pdif{^2 f}{\theta\ \partial y}\ +\ \frac{\cos\phi}{r \sin\theta}\ \pdif{^2 f}{\phi\ \partial y}}\\ \\ &\colorbox{yellow}{$=$}\sin\theta\ \sin\phi\ \left(\pdif{}{\ r}\ \colorbox{yellow}{$\pdif{f}{y}$}\right)+\frac{\cos\theta\ \sin\phi}{r}\ \left(\pdif{f}{\theta}\ \colorbox{yellow}{$\pdif{f}{y}$}\right)+\frac{\cos\phi}{r \sin\theta}\ \left(\pdif{f}{\phi}\ \colorbox{yellow}{$\pdif{f}{y}$}\right)\\ \\ &\colorbox{yellow}{$=$}\sin\theta\ \sin\phi\ \left[\pdif{}{\ r}\ \left(\sin\theta\ \sin\phi\ \pdif{f}{\ r}+\frac{\cos\theta\ \sin\phi}{r}\ \pdif{f}{\theta}+\frac{\cos\phi}{r \sin\theta}\ \pdif{f}{\phi}\right)\right]\textbf{...}\\ &\textbf{...}\ \ +\frac{\cos\theta\ \sin\phi}{r}\ \left[\pdif{}{\theta}\ \left(\sin\theta\ \sin\phi\ \pdif{f}{\ r}+\frac{\cos\theta\ \sin\phi}{r}\ \pdif{f}{\theta}+\frac{\cos\phi}{r \sin\theta}\ \pdif{f}{\phi}\right)\right]\textbf{...}\\ &\textbf{...}\ \ +\frac{\cos\phi}{r \sin\theta}\ \left[\pdif{}{\phi}\ \left(\sin\theta\ \sin\phi\ \pdif{f}{\ r}+\frac{\cos\theta\ \sin\phi}{r}\ \pdif{f}{\theta}+\frac{\cos\phi}{r\ \sin\theta}\ \pdif{f}{\phi}\right)\right]\ . \end{align*}Upon comparison of what follows to the equations for $\partial^2 f / \partial x^2,$ they will be found to vary only in the sign (+/-) in front of some terms and some changes from $\cos$ to $\sin$ or vice versa. All of the differentiations being quite similar to those on the previous page, producing:
And after multiplying through to eliminate the parentheses, we get:
Which after combining some of the terms, leaves us with:
Obtaining the Second Order Partial Differentials: $\partial^2/\partial z^2$Again, as noted above, the second order partial derivative of the function $f$ (this time, with respect to $z$) is found by substituting some of the right-sides of the equations already shown on the previous page into the first order differentials highlighted below, and then making use of the chain rule as before: \begin{align*} \large{\pdif{^2 f}{z^2}} &\colorbox{yellow}{$=$}\ \large{\cos\theta\ \pdif{^2\ f}{r\ \partial z}-\ \frac{\sin\theta}{r}\ \pdif{^2 f}{\theta\ \partial z}}\\ \\ &\colorbox{yellow}{$=$}\cos\theta\ \left(\pdif{}{\ r}\ \colorbox{yellow}{$\pdif{f}{z}$}\right)-\frac{\sin\theta}{r}\ \left(\pdif{}{\theta}\ \colorbox{yellow}{$\pdif{f}{z}$}\right)\\ \\ &\colorbox{yellow}{$=$}\cos\theta\ \left[\pdif{}{\ r}\ \left(\cos\theta\ \pdif{f}{\ r}\ -\ \frac{\sin\theta}{r}\ \pdif{f}{\theta}\right)\right]\textbf{...}\\ &\textbf{...}\ \ -\frac{\sin\theta}{r}\ \left[\pdif{}{\theta}\ \left(\cos\theta\ \pdif{f}{\ r}\ -\ \frac{\sin\theta}{r}\ \pdif{f}{\theta}\right)\right]\ .\end{align*}After carrying out the differentiations, we obtain:
The Sum of All Three Second Order Partial DifferentialsHere we sum up all three of the previously derived terms of the second order differentials of $f$ with respect to $x$, $y$ and $z$: \begin{align*}&\large{\pdif{^2 f}{x^2}+\pdif{^2 f}{y^2}+\pdif{^2 f}{z^2}}\colorbox{yellow}{$=$}\\ &\colorbox{yellow}{$=$}\sin^2\theta\ \cos^2\phi\ \pdif{^2 f}{\ r^2}+\frac{2\ \sin\theta\ \cos\theta\ \cos^2\phi}{r}\ \pdif{^2 f}{r\ \partial\theta}-\frac{2\ \sin\theta\ \cos\theta\ \cos^2\phi}{r^2}\ \pdif{f}{\theta}\ \textbf{...}\\ &\textbf{...}\ \ \colorbox{pink}{$-\frac{2\ \sin\phi\ \cos\phi}{r}\ \pdif{^2 f}{r\ \partial\phi}+\frac{\sin\phi\ \cos\phi}{r^2}\ \pdif{f}{\phi}$}+\frac{\cos^2\theta\ \cos^2\phi}{r}\ \pdif{f}{r}\ \textbf{...}\\ &\textbf{...}\ \ +\frac{\cos^2\theta\ \cos^2\phi}{r^2}\ \pdif{^2 f}{\theta^2}\colorbox{pink}{$-\frac{2\ \cos\theta\ \sin\phi\ \cos\phi}{r^2\ \sin\theta}\ \pdif{^2 f}{\theta\ \partial\phi}+\frac{\cos^2\theta\ \sin\phi\ \cos\phi}{r^2\ \sin^2\theta}\ \pdif{f}{\phi}$}\ \textbf{...}\\ &\textbf{...}\ \ +\frac{\sin^2\phi}{r}\ \pdif{f}{r}+\frac{\cos\theta\ \sin^2\phi}{r^2\ \sin\theta}\ \pdif{f}{\theta}+\frac{\sin^2\phi}{r^2\ \sin^2\theta}\ \pdif{^2 f}{\phi^2}\colorbox{pink}{$+\frac{\sin\phi\ \cos\phi}{r^2\ \sin^2\theta}\ \pdif{f}{\phi}$}\ \textbf{...}\\ &\textbf{...}\ \ +\sin^2\theta\ \sin^2\phi\ \pdif{^2 f}{\ r^2}+\frac{2\ \sin\theta\ \cos\theta\ \sin^2\phi}{r}\ \pdif{^2 f}{r\ \partial\theta}-\frac{2\ \sin\theta\ \cos\theta\ \sin^2\phi}{r^2}\ \pdif{f}{\theta}\ \textbf{...}\\ &\textbf{...}\ \ \colorbox{pink}{$+\frac{2\ \sin\phi\ \cos\phi}{r}\ \pdif{^2 f}{r\ \partial\phi}-\frac{\sin\phi\ \cos\phi}{r^2}\ \pdif{f}{\phi}$}+\frac{\cos^2\theta\ \sin^2\phi}{r}\ \pdif{f}{r}\ \textbf{...}\\ &\textbf{...}\ \ +\frac{\cos^2\theta\ \sin^2\phi}{r^2}\ \pdif{^2 f}{\theta^2}\colorbox{pink}{$+\frac{2\ \cos\theta\ \sin\phi\ \cos\phi}{r^2\ \sin\theta}\ \pdif{^2 f}{\theta\ \partial\phi}-\frac{\cos^2\theta\ \sin\phi\ \cos\phi}{r^2\ \sin^2\theta}\ \pdif{f}{\phi}$}\ \textbf{...}\\ &\textbf{...}\ \ +\frac{\cos^2\phi}{r}\ \pdif{f}{r}+\frac{\cos\theta\ \cos^2\phi}{r^2\ \sin\theta}\ \pdif{f}{\theta}+\frac{\cos^2\phi}{r^2\ \sin^2\theta}\ \pdif{^2 f}{\phi^2}\colorbox{pink}{$-\frac{\sin\phi\ \cos\phi}{r^2\ \sin^2\theta}\ \pdif{f}{\phi}$}\textbf{...}\\ &\textbf{...}\ \ +\cos^2\theta\ \pdif{^2 f}{\ r^2}-\frac{2\ \sin\theta\ \cos\theta}{r}\ \pdif{^2 f}{r\ \partial\theta}\textbf{...}\\ &\textbf{...}\ \ +\frac{2\ \sin\theta\ \cos\theta}{r^2}\ \pdif{f}{\theta}+\frac{\sin^2\theta}{r}\ \pdif{f}{r}+\frac{\sin^2\theta}{r^2}\ \pdif{^2 f}{\theta^2}\ .\end{align*}Ten of the terms cancel out immediately. However, in order to reduce all of the remaining terms to (Equation S), trigonometric identities, such as, $\sin^2 x+\cos^2 x= 1$, and algebra must be used after combining like terms: \begin{align*}&\large{\pdif{^2 f}{x^2}+\pdif{^2 f}{y^2}+\pdif{^2 f}{z^2}}\colorbox{yellow}{$=$}\\ &\colorbox{yellow}{$=$}\bigg[\sin^2\theta\ \cos^2\phi+\sin^2\theta\ \sin^2\phi+\cos^2\theta\bigg]\colorbox{lightblue}{$\pdif{^2 f}{\ r^2}$}\textbf{...}\\ &\textbf{...}\ \ +\colorbox{pink}{$\bigg[\frac{2\ \sin\theta\ \cos\theta\ \cos^2\phi}{r}+\frac{2\ \sin\theta\ \cos\theta\ \sin^2\phi}{r}-\frac{2\ \sin\theta\ \cos\theta}{r}\bigg]\ \pdif{^2 f}{r\ \partial\theta}$}\textbf{...}\\ &\textbf{...}\ \ +\bigg[-\frac{2\ \sin\theta\ \cos\theta\ \cos^2\phi}{r^2}+\frac{\cos\theta\ \sin^2\phi}{r^2\ \sin\theta}-\frac{2\ \sin\theta\ \cos\theta\ \sin^2\phi}{r^2}\textbf{...}\\ &\textbf{...}\ \ +\frac{\cos\theta\ \cos^2\phi}{r^2\ \sin\theta}+\frac{2\ \sin\theta\ \cos\theta}{r^2}\bigg]\ \colorbox{lightblue}{$\pdif{f}{\theta}$}\textbf{...}\\ &\textbf{...}\ \ +\bigg[\frac{\cos^2\theta\ \cos^2\phi}{r}+\frac{\sin^2\phi}{r}+\frac{\cos^2\theta\ \sin^2\phi}{r}+\frac{\cos^2\phi}{r}+\frac{\sin^2\theta}{r}\bigg]\colorbox{lightblue}{$\pdif{f}{r}$}\textbf{...}\\ &\textbf{...}\ \ +\bigg[\frac{\cos^2\theta\ \cos^2\phi}{r^2}+\frac{\cos^2\theta\ \sin^2\phi}{r^2}+\frac{\sin^2\theta}{r^2}\bigg]\colorbox{lightblue}{$\pdif{^2 f}{\theta^2}$}\textbf{...}\\ &\textbf{...}\ \ +\bigg[\frac{\colorbox{lightgreen}{$\sin^2\phi$}}{r^2\ \sin^2\theta}+\frac{\colorbox{lightgreen}{$\cos^2\phi$}}{r^2\ \sin^2\theta}\bigg]\colorbox{lightblue}{$\pdif{^2 f}{\phi^2}$}\ .\end{align*}Examples of how the terms above can be reduced:
After applying similar algebraic operations to all the terms, the equation does in fact reduce to: $$\large{\nabla^2 f} =\colorbox{lightblue}{$\pdif{^2 f}{\ r^2}\ +\ \frac{2}{r}\ \pdif{f}{\ r}\ +\frac{1}{r^2}\ \pdif{^2 f}{\ \theta^2}\ +\frac{cos\ \theta}{r^2\ \sin\theta}\ \pdif{f}{\ \theta}\ +\ \frac{1}{r^2\ \sin^2\ \theta}\ \pdif{^2 f}{\phi^2}$} = 0\quad\textbf{(Equation S)}$$
$\leftarrow$ Previous Page
The Math symbols and equations displayed here use LaTeX under MathJaX.
First Posted on: 23 November 2023 (2023.11.23). |