| 
     
      | 
    
     
      | 
  
| 
     
      | 
    
     
      | 
  
Is the frequency of the 
  digits found in π truly random? 
  
      First, I must explain that many would consider π a "pseudo-random" 
  number, since the number is, after all, always the same. The same pattern of 
  digits is arrived at each time we calculate π to a set number of decimal 
  places; otherwise it would be useless as a means of checking the accuracy of 
  our computers and the programs we run on them. What we are actually examining 
  then is the appearance of "randomness" 
  within a fixed number. 
  
  So I'll ask instead, "Does π's fixed pattern of digits appear as a random 
  stream?" Generally speaking, I would have to say, "Yes." However, 
  depending upon which particular decimal place of π that we stop to add up 
  each of its ten digits1, we may find some 
  peculiarities leading the average person to wonder if this is true. Note that 
  in each of the four bar graphs above, the digits zero and seven 
  appear to be doing 'rather poorly' at 'breaking even,' and the digits five 
  and six come up to 'the even mark' only once. The digit three 
  is characteristic of that which most people would like to see for all of the 
  digits in a random stream:   just a little above or below or 'right 
  on the money' for each sampling. Whereas the digit one appears as if 
  its 'racing to be #1' in the frequency count! It increases from 
  only 1 to 16 counts above the mark, and is never below it. Four and eight 
  are somewhat similar to three. And the digits two and nine are 
  always 'over the mark' for these samplings.
| 
     
      | 
  
    At 10,000 
  decimal places (see the bar graph above), we find that the digits two 
  and nine are still 'well over the mark,' and the digits zero and 
  seven are still 'doing quite poorly' in 'reaching the mark.' But there 
  are some significant differences as well: Although the digit one is nicely 
  ahead of almost all the others, the digit five is now far beyond 
  it and has become the new #1 in this 'race against the odds.' 
  Also note that the digit eight is now 'far behind' all the others! 
  
  The idea of what a truly random number consists of must be examined. 
  Random does not mean that every time we examine 
  large numbers of various lengths, each of the digits must have the same frequency! 
  If this were the case, then many of the patterns we now find in 
  the digits of π would disappear. Without some differences (including large 
  differences at times) in digit-frequency between various samplings, it would 
  be impossible for patterns such as '77777777' to appear. As a matter of fact, 
  a large number with nearly constant digit-frequencies for each sampling length 
  might be a very NON-random number, such as, the digits 0-9 simply repeating 
  over and over again! 
  
      What I've tried to show here is that we can use the various 
  digit-frequency graphs as a guide in helping us to determine the 
  randomness of π. 
      I wish that I had the time and talent to develop a computer 
  program which would be able to take into account all the distribution data for 
  each and every decimal place of π up to a rather large expansion, say at 
  least 50 billion digits (the record set in 1999 was already 
  over 206 billion!2). This might provide us with enough data to arrive at a meaningful conclusion, 
  at least inductively, about the randomness of π. By having a computer quickly 
  review the variations in the frequencies at each digit, like watching a movie, 
  I believe we'd come to the conclusion that π is indeed random. (Since I'm 
  no "expert" in this field, it may very well be that such data already 
  exists. For some further musings by a mathematician on questions about the Normality 
  and Randomness of π see: Is 
  Pi Normal? by Stan Wagon.)
  
      If you would like to examine some data about π's digit 
  frequencies, I do have a table here which lists 55 different distribution samples 
  with all the statistics for each digit; it also includes the CHI-Square 
  ( χ²) for each sampling:
  55 Frequency Distributions 
  for the Digits of π up to
  3 billion ( 3,000,000,000 ) Decimal Places. 
  
  
      As is often the case in Mathematics, in order to understand the 
  randomness π, one must also have a good concept of infinity. Although I believe 
  that an infinite expansion of π would result in no significant difference 
  for the variations in the frequency of its digits, proving that this is actually 
  the case is certainly beyond my abilities. This may help to explain why some 
  people are still hunting for messages in the latest calculations of π. 
  One thing I'm sure of: we will always be short of infinity, so it's anyone's 
  guess as to how far off from an even distribution (or close) that some particular 
  decimal place of π may become before it swings back in the opposite direction. 
  Although I'm looking forward to some delightfully interesting patterns yet to 
  be discovered in π, I doubt you'll ever find any "hidden messages" 
  in it.
  
  Question: "Are there any known points within π at which all ten of its 
  digits have exactly the same frequency?" ( I had been thinking about writing 
  a Perl program to search for this, but now I'm guessing that most likely such 
  a distribution does not exist. If anyone does find such a decimal place at which 
  this is true, your name will definitely be honored here.)
 " 
There's a beauty to Pi that keeps us looking at it... 
The digits of Pi are extrememly random. They really have no pattern, and in mathematics 
that's really the same as saying they have every pattern."  
3
I wonder if anyone has ever developed a fanatical belief in the existence of some 
"ultimate" hidden message within the digits of π in the real world. 
Since the widespread use of computers, there have also been a number of literary 
plots developed around such an idea; a couple have even made it to the 
big screen. So, I'm not surprised to find some people who appear 
to be overly amazed at the patterns that seem to emerge from this string of numbers. 
But there is no special meaning to be found here!
    I have always had an interest in the numbers I've come across 
in my life, but any possible meaning I might find in them is all coincidence; 
something to have fun with, not something I would ever use in making 
a decision, or when searching for some spiritual truth! Martin Gardner once 
wrote about the similarities that people had found between Abraham 
Lincoln and John F. Kennedy after JFK had been assassinated. Then he proceeded to
show that it might be just as easy to find the same number of 'surprising' similarities 
for almost any two people if we carefully looked for 
them.4
    We should enjoy these curious conjunctions for what they are, but 
never allow them (or some person proclaiming there's a message in these or any other 
numbers, cards, signs in the heavens, etc.) to manipulate us! There are often 
some rather amazing coincidences in our lives, but also many magician's tricks which 
can be used by con-artists to swindle you.
Since there are only 10 digits in our number system and many different ways in 
which we use numbers in our lives (birth, marriage and death dates, ID numbers 
like social security or driver's licenses, telephone numbers, credit card numbers, 
addresses, etc.) it's actually pretty easy to come across many similarities which 
may appear to be significant if you believe that they must be! And 
with an infinite stream of random digits to pick and choose from, you should be 
able to find ALL of them within the digits of π. For example, it's very easy 
to find calendar years and dates of things considered to have great significance. 
![]()  | 
    
  
      Keeping all of the above in mind, I'd 
  like to point out a few digit combinations within the first 1000 decimal places 
  of π that have caught some people's attention. It's pretty easy to find all 
  of the binary representations for the decimal numbers 0 through 7; that is 000, 
  001, 010, 011, 100, 101, 110, and 111. (The sequence 10100 beginning 
  at the 852nd place giving us three of those.) You'll see many doubled 
  digits highlighted in yellow and some tripled digits 
  (including 000 and 111) highlighted in green 
  [see the illustration above]. If you group the digits into twos or threes, you'll 
  find a few doublings like 1212 or 9494, and beginning at 
  the 326th decimal place you'll find 209209.
  
  Someone once asked, "Since π has such a close relationship to a circle 
  (and using 360 degrees to express its circumference) where do we find the digits 
  360 in π and is there anything significant about them?" Well 
  the first 360 begins at the 285th decimal place; nothing interesting 
  about that. However, the second 360 (you'll find it underlined 
  with red in the illustration above) begins at the 258th decimal place. This 
  means the number of degrees in a circle ends up being centered 
  on the 360th digit  of π, so some people think that's significant. 
  However, this value of 360 in relation to circles is only related to the Babylonian's 
  sexagesimal (base 60) number system, not an actual relationship 
  found in nature! So, it's only somewhat interesting because we use degrees more 
  often than grads or radians or whatever else; it's not truly significant. 
  (REMEMBER: If it's possible to find some kind of meaning here, people will do 
  it any way they can! And I'm certain if a '360' had begun 
  at the 259th decimal place instead, people would simply drop the initial whole 
  number '3' and talk about how it was centered on 360 decimal places.)
  
  The most interesting pattern here for me is the fact there are six 
  nines in a row (999999) beginning at the 762nd decimal 
  place (highlighted with a sky-blue  background 
  in the illustration above). I used to wonder if these digits had been calculated 
  one by one and if so, what did that person feel like at the time. Imagine their 
  surprise at finding the digit 9 repeating four, five, and then six times in 
  a row!
  
  [ I've decided to release the color highlighted table 
  of Pi's first 1000 decimal places in an HTML version... 1000 Decimal Places of Pi with Color Highlighting. 
  ]
  
  D. F. Ferguson started his calculations of π in 1944 with the aid of a mechanical 
  "desktop" calculator. At some time in 1945 he arrived at these repeating 
  nines. Even though he used a machine to do the number crunching, it still took 
  quite a while for him to arrive at an answer for each of these digits. I don't 
  have any idea what he was thinking at the time, but since π had already been 
  proven to be both irrational and transcendental, I'm sure he knew these nines 
  couldn't continue forever. I do, however, wonder if he ever thought he may have 
  made a mistake somewhere when he got to the fifth or sixth nine! Pressing on, 
  he finally ceased his calculations at the 808th digit ( because "e" 
  -- another very special number in Mathematics -- had previously been 
  calculated to that length) and awaited verification of his results. By 
  1948, J. W. Wrench and Levi B. Smith were able to verify all 808 digits. Imagine 
  having to wait more than two full years for someone to verify your
  work!5 
     π  can always provide 
  us with a necessary diversion, but Life is far too short to spend all your time 
  searching through these digits!
  
  If you've got the time, here's a site where you can search for patterns of digits 
  in π ... (Site 1 used the first 10,000,000 digits...) 
  but Site 2 has recently (since Pi-Day, 
  March 14th, 2005) been updated to: 200,000,000 decimal places!
  
  Site 1:    http://gryphon.ccs.brandeis.edu/~grath/attractions/gpi/ 
  (opens in a new window). Note: The function to use the letter 'd' as a wild 
  card does NOT appear to be working!
  Here's an example of the output you'd get if you searched for the digits 314159 
  (this site includes the whole number 3 as its first digit ) : SORRY 
  this site appears to no longer exist!
  
  
 
![]() ResultsThe string 99999999 was found at position 36356642 counting from the first digit after the decimal point. The 3. is not counted.Find Next The string and surrounding digits: 41514034212784215746 99999999 54228236003568972187 This page was brought to you by David G. Andersen [WWW] [Email] Return to the Pi-Search Page. this query took 1.173826 seconds to process  | 
Footnotes
__________________
  1 My observations here have 
  been limited to the Decimal number system, but one could always expand the research 
  to include other bases such as Octal or Hexadecimal. 
  
  2 
  In 1997, the record was already over 50 billion. 
  And in September, 1999, the declared and verified record exceeded 200 billion! This was accomplished using an Hitachi SR8000 with 
  128 CPUs for a total theoretical peak processing speed of 1 Trillion floating 
  point operations per second!
  3 
  Statement by Peter Borwein, 1996. 
  4 
  Martin Gardner, _ (we're unsure now of the exact reference, it's 
  probably from the chapter on "Coincidence" in, On Knotted Doughnuts 
  and Other Mathematical Entertainments, though it could be from any number 
  of other books which might include the comments of Gardner's Dr. Matrix 
  character, on this subject; possibly within the book itself entitled: The 
  Magic Numbers of Dr. Matrix. NOTE: We did finally discover some 
  specific references to Lincoln and Kennedy on pages 41-45 of this book; 
  using amazon.com's search program).
  5 
  Some of these facts were found in a paper placed into public domain by Carey 
  Bloodworth on August 11, 1996.
E-mail 
address. (Opens a new window.)
Helping out thinking people  since November 8, 1998.
Last Update: 22 May 2007.